
NASA-CR-19Z885

April 1993 UILU-ENG-93-2212

CRHC-93-05

Center for Reliable and High-Performance Computing

I :

J /

_j

ANALYSIS OF
LARGE SYSTEM
BLACK BOX VERIFICATION
TEST DATA

Kenneth C. Clapp and Ravishankar K. Iyer

(_JASA-CP-I :_?.:_qS) ANALYSIS OF LARGE

5Y3T_,' ':'_LACK _LJ× V._P,I,CLCATInN T_ST

_;aTa (Illinois Univ.) 51 O

N93-24748

Unclas

63/62 01qdSb2

Coordinated Science Laboratory

College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

18.REPORTSECuAITYCLASSIFICATION

REPORT DOCUMENTATION PAGE j _,*J,_o_".,-* ,
| I I

U.c La_ [f iud
71S[C fY C_SSI_ _ tiO N Zu't"omtt

2b, DECLASS_FIC.ATION/DOWNG/L_DtNGS,CHEDULE

I I

|: PERFORMINGORGANIZATIONREFORTNUMBER(S)

UILU-ENG-93-2212 CRHC-93-05

h. NAMEOF PIRFORMINOORGANIZATION
Coordinat:ed Science Lab

Un,iverst r¥ of, ILl 1_,9__
AOOBESS(OVy.StJm0_ Z_C_J

IL01 W. Sprinsfield Ave.

Urbana, IL 6L801

r_. NA_ OFFUN_NG /SXONSOaI_
OR_IZATION

ONR, NASA
i I J

k. AOORESS(C_. $_m. *_ Z_¢om)

I •

_. OFFICESYMBOl,
Of _a_We)

I

rib. OFFICE" SYMIOL

(al _pl_cad_)

Office of Naval Research NASA Langley

800 N, Quincy Rampcon, VA

Arlington, VA 23665
|

11.TITL£(_wSumSec_ C_u_k_t_

Analysis o'f Large System Black Box Verification
I I I I

_2. paa_O_ AUrNOR($)
Kent C. Clapp and Revishankar K. lyer

;$_. rvp| OF R£POAY ' 13hi'TIM| COVERED '
Techn ica I FROM TO

,B.su Ei im, v O'TAT N

lb. RESTRICTIVEMAII,KINGS

I I

II II

None
II

] O,StlI_IUtSO'N/AV_LAIIL|tYOF _EPORT

Approved for public release;
dlscrlbut£on unlimited

$. MONITORINGOR_M_I_kTIONBEI_RT NUM||R_)

7,. NAMEOF MONITORING'OR_IJ_IIL_TION

NASA Langley

Hampton, VA
23665

ONR, NASA

;b. _OO_SS(C_y. 9_. _ Z_CO_VJ

oft. of .Naval Research

800 N. Quincy

h_l_on w V&
g. PROCUREMENT INSTXUMENTIOENTIF_'._TIONNUt_IEII

ONE: N000145-1116

NASA: ,NAG 1-613
I0 SOURCE OF FUNDING NUMBERS

p_o_ p_icir T_
ELEMENTNO. NO. NO.

Test Data

I I

'WORK UNIT
_CCESSlONt_O.

II

,7. ' cos.ncoo. SUBJectfEeUs W
FIELO' ' GaOUP SUB_aOUP ' Test, Verification, Evaluation, Coverage, Prediction,

Black Box, White Box, Testing Process, Data Analysis

I ' I II

i_. AISTIU4CT[|Cen_M_ o_ m_ ;f S_Ct_IflF_/dlnDf_ by (_docknuml_r)

i I I0. OiSTRIIUTIONIAVAIU_IILITYOF ABSTRACT
r_ UNCLASSIFIED/UNLIMITED_ $_.u-.EAS RPT.
I II I I II

_Jl. NAME OF RESPONSIBLE INDIVIOUAL

[] OTICUSERS
I

)O Form 1473. JUN 16 _eumuxedmonJ._teoWoient,

This paper explores issues regarding bla_k box, large systems verification. It be1_s by collecting
data from several testing teaans. An integrated d_t_d)ase cont_;ning test, fault, repair, and source

file information i_ generated. Intuitive effectiveness measures are generated using conventional bla_k

box testing results anaJysis methods. Conventionai anaJysis methods indicate that the testing wu
effective in the sense that u more tests were run, more faults were found.

Average behavior and individual data points are analyized. The data is categorized and &vera_e

behavior shows & very wide variation in number of tests run _-d in pass rates (pus rates ranged

from 71% to 98%). The _white box" data contained in the integrated database is studied in detail.

Conservative measures of effectiveness are discussed. Testing efficiency (ratio of repairs to number

of tests) is measured at 3%, fault record effectiyeness (ratio of repairs to fault records) is measure

gnc-I ass ifled
I I

_b. TELEPNONE(M_I_ A_) C_,I llc. OFFICESYMBOL

_ECURITY CLASSIFICATION OF Tills PAGE

UNCLASSIFIED

• I I

IAOATE OF a|IiORT'IYe_,MInlEO_) II:PAG| COUNT

. April 1993 48

III I

I II I

CONTENTS

1. INTRODUCTION 2

2. SURVEY OF RELATED LITERATURE 3

3. SOURCES OF DATA 5

3.1 Construction of the Integrated Database 7

4. DATA COI/_CTION AND CONVENTIONAL ANALYSIS 8

4.1 Description of Data 9

4.2 Test Distribution vs. Next Product Stage Fault Distribution 10

4.3 Testing Dam Measures 11

4.4 Data Categorized by Team 14

5. DATA CATEGORIZED BY FUNCTIONAL AREAS 16

5.1 Testing Data Analysis Summm_ 20

6. IMPROVED wHrrE BOX ANALYSIS 20

6.1 Analysis of Integrated Database Records 21

6.2 Correlation Mapping of Test Script Functional Area to Product Subsystem 26

7. ADAZrIVE TESTING PROCESS PROPOSED 28

8. CONCLUSIONS AND RECOMMENDATIONS 29

PREIEDING PPlGE BLANK NOT FILMED
-V-

Appendix 1 - Distribution Comparison of Tests and IMRs 31

Appendix 2 - Example Tuple: Integrated Testing/Product Database 37

Appendix 3 - Example Tuple :FA SS Existence Matrix 40

Appendix 4 - Example Tuple : FA SS Correlation Matrix 41

REFERENCES 43

-vi-

LIST OF FIGURES

Figure 1. Subsystems and Functional Areas 6

Figure 2. Test Run to Solace Code Linkage 7

Figure 3. Propagation of Redundant Information in the Integrated Database 8

Figure 4. Test, Enhancement, Next Stage Fault Distributions 11

Figure 5. Test Sampling Effectiveness Measure 12

Figure 6. Test Executions Per Functional Area 13

Figure 7. Pass Rate VS Tests Run Per FA For Six Teams 15

Figure 8. Pass Rate VS Tests Run Per Team For Ten FAs 19

Figure 9. Typical Failed Test Relationships 25

Figure 10. Correlation Coefficients for One Subsystem 27

-vii-

LIST OF TABLES

Table 1. Overall Test Team Information 9

Table 2. FA Test Run Statistics Per Team 14

Table 3. FA Test Run Statistics Across Teams 17

Table 4. Summary of Testing Impact to Product 21

Table 5. Summary Tables of Frequency Distributions 22

Table 6. Test, Fault, and Repair Relationships Quantified 23

..°

-Wll_ o

Analysis of Large System Black-Box Test Data

Kent C. Clapp

AT&T Network Systems

Naperville, IL

Ravishankar IC Iyer

Center for ReLiable and High Performance Computing

University of Illinois at Urbana-Champaign

ABSTRACT

This paper studies black box testing and verification of large systems. Testing data is collected from

several test teams. A fiat, integrated database of test, fault, repair, and source file information is built. A

new analysis methodology based on the black box test design and white box analysis is proposed. The

methodology is intended m support the reduction of testing cost and enhancement of software quality by

improving test selection, eliminating test redundancy, and identifying error prone source files. Using

example data f_om AT&T systems, the improved analysis methodology is demonslrated.

Index Terms: Software Testing, Validation, Fault�Repair Data, Analysis, Test Minimization

-1-

I. INTRODUCTION

The cost of finding and repairing faults in programs ranges from 40 to 80 percent of the total development

cost [11. Effectiveness and efficiency of a test program in achieving its goals must be analyzed in order to

contribute favorably to overall product goals. The analysis must consider data from a test database, as well

as data fi'om product-fault and product-repair databases. New methods to measure test efficiency and

analysis are necessary in order to both maintain product quality and contain development cost.

This paper addresses the issue of netwo_ level, large systems verification. Verification of networks often

requhes execution of hundreds of black box test scripts each of which may cover several loosely coupled

network elements. Each network element may use several different software programming languages. The

study begins by collecting data from several testing teams. An integrated database is generated containing

test, fanlt' repair, and source file information. An overview of the testing data is provided and intuitive

effectiveness measures are generated f_m conventional black box test data. The data is categvgized by

team and Functional Area (FA). Average behavior and individual data points are analyzed. Finally, the

"white box" data contained in the integrated database is used in the analysis of the testing results.

Specifically, the analysis methodology consists of three steps: 1) Build a fiat, integrated database of test,

fault, repair, and source file information. 2) Use the database to evaluate the efficiency of testing and the

effectiveness of fault repaks. 3) Based on the database, modify test selection, identify redundant tests, and

identify error lzrone source files to reduce testing cost and enhance softwme quality.

The results of ore" analysis show that when the white box and black box data contained in the integrated

database were jointly analyzed, the net impact to the product (11 source files repaired) of the testing effort

(352 tests) was clarified. Testing efficiency (ratio of repairs to number of tests) was measured at 2 percent,

fault record effectiveness (ratio of repairs to fault records) was measured at 35 percent, and measures of test

script redundancy (ratio of number of failed tests to minimum number of tests needed to find the faults)

ranged f_om 4.2 to 15.8. Error prone source files and subsystems were also identified. An adaptive testing

process is proposed.

-2-

Thefollowingtermsareusedthroughoutthispaper:."Feature" and "Functional Area 0FA)" refer to

user-oriented segments of product functionality which are independent of the internal product structure.

"SubSystem (SS)" refers to closely related software components which make up a subset of the overall

softwale product. "Black box" refers to methods or tests which are independent of the internal structure

(subsystems) of the product. A black box test script is developed primarily from the feature definition.

"White box" testing refers to methods which can be mapped directly to lxoduct internals (subsystems,

functions, etc.). The terms "test run" and "test execution" are used interchangeably.

2. SURVEY OF RELATED LITERATURE

Many studies of software testing have been performed. Deterministic methods for white box testing of

small software products have been effectively utilized. Slrucuue-based testing attempts to use knowledge

of program conslructs to test a segment of code. Completion of testing is based on statement coverage,

branch coverage, switch coverage, etc. Complexity-based approaches to testing compute the cyclomatic

complexity of the program using a program graph. Number of edges, nodes, and connected components are

considered. Testing coverage is then measured relative to the program graph. Analytic caTectness proofs

axe sometimes used to prove program correctness. Gatlagher coal., t21 introduce decomposition sfices as a

way to eliminate regressiontesting.

Each of these white box methods can be very effective in providing product coverage and finding faults in

small program testing, but become untm3ductive when testing a large system with millions of Non

Commentary Source Lines (NCSLs). Methods for measuring coverage and effectiveness are much less

clear in large system black box testing.

Important topics in effective black box testing include test goals, test selection slrategies, test processes,

and test coverage. Kaner discusses the goals of testing. Kaner [11 describes the dilemma of black box

testing as dominated by the need to select a few test cases from a huge set of possibilities. The author

concludes that it is not the purpose of testing to prove that a program works correctly, nor to find all the

-3-

bugs,butto find and repair as many faults as possible. A guiding principle is "A test that finds a probl_n

is a success. A test that did not reveal a problem was a waste of time." Howden [3] states that the goal

of developmental testing is completeness with respect to programming errors.

Several strategies for test selection and design exist. Dunham et.al., [41 discussed the transformation of

validation into a systematic series of integrated steps. Chow [_ states that tests must be carefully selected to

increase the probability that if there ale errors in the program, they will be detected during test runs. Musa,

et.al., [61state that the best test strategy is the one that results in the greatest reduction in operational failure

cost per unit of test cost. In general, tests should be selected such that the failure intensity is reduced as

rapidly as possible. Sherer [71 proposes a model to measure the differences in risk between program

modules, and determine when the risk of failure no longer justifies the cost of testing. Weyuker et.al, Is]

compares the fault de_ectioa capabilities of partition testing and random testing.

Results of studies in sofllvam reliability can also be applied in determining test selection strategies. Studies

performed by Iyer et.aL _91,[101found that incremental risk of a software failure increased exponentially with

increasing workload, and that in a network of machines, errors are highly correlated across machines due to

shared resources. Based on these results, suites of tests should include heavy workload conditions with

high user demands. The probability of finding faults can be increased by generating these high user

demands with appfication programs performing heavy IO. The suite design should also include a large

number of tests which focus slrongly on shared resources. Work on defect classification by Chillarege

et.al., [111is valuable in aiding the development of effective tests. Munson eLal. [121propose discriminant

analysis for the detection of fault-prone programs as a guide for focused testing.

A definition of testing coverage is provided by Levendel [13l. Test coverage is a measure of defect removal

effectiveness. He defines testing coverage during a time interval as the ratio of the defects found during the

inun-val to the total defects existing in the system at that time.

Recent studies have explored white box analysis from black box teat design. Joglekar [141studied white box

data, but did not include systematic methods. Levendel [151 provided systematic methods, but did not

include a complete mapping to the source code. This paper includes both a complete mapping to individual

black box test scripts, and a systematic method for analysis.

-4-

Attempts to provide coverage or software construct-based tools (dependent on the programming language

being used) have been unproductive in large system verification. The tools and methods of this paper are

dependent only on the databases which track testing, faults, repairs, and source file modifications. The

methods discussed in this paper can be used for any software system regardless of its programming

language. Methods here provide specific feedback on each individual failed test. This feedback can be

used to improve testing.

3. SOURCES OF DATA

The terms Functional Area (FA) and SubSystem (SS) will be used extensively throughout this paper. SS

refers to closely rel_t___t_oftwamre components which make up a subset of the overall product. A complete,

nonoverlapping part:_omng of the product can be obtained using the SSs. Each SS contains a unique set of

source files (e.g., Src 1,n refers to the nth source file in SS 1). Typically, all SS components reside on the

same mainframe computer. FA refers to user-oriented segments of functionality. FAs vary significantly

from one another in size and complexity. A FA may be a subset of a SS, or may span several SSs. FAs

may also overlap one another. An example FA which expands several SSs might be "A_tration".

Figure 1. Subsystems and Functional Axem

-5-

Thedatacomesf_m AT&Ttesting,fault,andrepairdatabasescalledtheTestScriptDatabase (TSD), the

Internal Modification Request Tracking System (IMRTS), the Extended Change Management System

(ECMS), and the ECMS Source Code Change System (SCCS).

At AT&T, softwme faults are documented with Internal Modification Requests (INIRs). IMRs are also

used to introduce new features (enhancements). The IMR has a standard format which includes data such

as the environment and context of the error, the severity, the software release and software application, date

and type of problem, the phase of the development cycle in which the problem was found, etc. In this

paper, the IMR database is referred to as the fault database.

Modifications to the SoftWare (SW) product (fixes and enhancements) are done using the ECMS via a

Modification Request (MR). The MR also has a standard format which includes the product subsystem,

solution description, source files modified, products affected, dependencies, and test procedures. In this

paper, the MR database is referred to as the repair database. ECMS SCCS contains the actual delta file

source modifications. A delta file contains the changed (delta) code to be applied to the underlying source

file. The number of deltas per repair can be used as one measure of the repair effort. From the ECMS

SCCS, NCSL, load, and physical information can be extracted.

A brief scenm'io of a typical usage of these databases is given here. A test is written f_m the feature or

requirements document and is entered into the test database. The test is written independent of the design

or code (hence the term _black box" test). The test contains a list of the FAs tested. When the software has

been developed, developer and integration tested, it is delivered to the test laboratory. The black box test is

run. If the test fails, an IMR is opened in the fault database. The test execution results _ then entered into

the test database to reflect the tests status and fault number. The developer diagnoses and fixes the

problem. Source file modifications are made. The repair record is submitted to document the source

changes. The fault record is then updated to include the repair number. The fault record is closed, and the

test is rerun and its status is upgraded to "passed".

The above scenario supports a linkage from black box test to product internals. The test record can be

linked to the fault record(s) via the fault number(s). The fault record is linked to the repair record(s) via the

-6-

repair(modification) number(s). The repair record is linked to the source delta file(s) via the source code

name. This linkage is shown in the picture below:

Test Script Run Data

Fault Record Data

I
Modification Record Dam

Source File Delta

Test Script Database Record

't

I Srcl

't

Figure 2. Test Run to Source Code Linkage

The above databases were merged into a single fiat integrated database, to enable the proposed analysis to

be performed. The analysis of the relationships between black box test data and white box product data was

greatly facilitated by the integrated database.

3.1 Comtruction of the Integrated Database

In order to facilitate the analysis of testing data and its relationship to the product, a fiat integrated database

was constructed coomininff.

• Test rtm results data (ll attributes)

• Test script data (4 aUributes)

• Fault data (90 attributes)

• Repair data (3 attributes)

• Source code delta file data (5 atlributes)

-7-

The construction of this database began by extracting the execution results for all failed tests. Next, test

script keywords, fault data, repair data, and code source file data we_ appended to each failed test mple. A

total of 123 attributes resulted f_m each failed test execution. Appendix 2 contains an example of one

tuple (one execution of a test) in this database. Note that if a single test was executed and failed more than

once, it would have multiple entries in the database.

The process of appending the records to the database causes the database to "explode" rapidly. This occurs

because a given record from the test execution results file may contain multiple fault records. Therefore,

the fault list in the single test execution tuple must be "unmerged". This unmerging creates redundant test

execution results information. The same is true when unmerging the repair list from the fault record, and

unmerging the delta file information from the repair record. The resulting database "explodes" rapidly and

has the following structure:

Test Execution Results Test Script Data Fault Data
IL a c c

a,o
. . ." " " b d,e t

• ..' / . • / ,

/ F / / / /

/ , . :
• . / " F

• . • . / / f "

• , .. ,'.' " ' / ' - /

• C . , . . ,
/ / /

.... /

Repair Data Delta F'de Data

f,g f

hg
l,j,_ h

: •

Figure 3. Propagationof Redundant InformationintheIntegratedDatabase

The shaded area indicates propagated (redundant) information. Care must be used when analyzing results

due to redundant data.

4. DAYA COLLECTION AND CONVENTIONAL ANALYSIS

This sectiongives an overview of the data collected.It then discusses some intuitive measures of testing

effectiveness.

-8-

4.1DescriptionotData

Thedatausedareonlysmallsamplesfromaverylarge testing base. As such, the data is exemplary only,

and is not reflective of any current AT&T products. Testing data was collected from 8 sample test teams.

Six of the test teams tracked their testing using 10 FAs, and 2 tracked testing by 32 FAs for a total of 124

samples of data. These 124 samples of testing data are used throughout this paper.

Table 1 gives an overview of the data. For each team, the data collected includes number of tests written by

the team, number of tests run, and total number of test runs (executions). Test execution data was collected

for the first run and current status of the tests. (First Run (FR) dam "freezes" the metrics as they were

collected the first time the tests were run. The Current Status (CS) data contains the metrics from the most

recent executions of the tests.) Data collected from the first run includes number of tests which passed

without finding a fault, number of tests which passed although a fault was found, and number of tests which

failed. Totals for each m'e given as well as team averages, ranges, and standard deviations. The following

table shows this information for six of the test teams:

Attribute Total # Teams Average Min Max Std Dev

Tests Written 5818.00 6 969.67 352.00 2376.00 723.56

Tests Run 5799.00 6 966.50 352.00 2376.00 721.65

Total Runs 7182.00 6 1197.00 463.00 2732.00 825.22

FR Nttmber Pass 5067.00 6 844.50 307.00 2147.00 653.47

FR Pass With Fault 113.00 6 18.83 5.00 41.00 14.75

FR Fail With Fault 617.00 6 102.83 32.00 207.00 63.29

CS Number Pass 5639.00 6 939.83 350.00 2329.00 703.90

Table 1. Overall Test Team Information

Certain general chm-acteristics of the testing process can be deduced from this table. For example, each test

-9-

is executed, on the average, 1.24 (7182/5799) times. Overall, 13 percent (73015799) of the tests found an

error the first time the test was run. It is interesting to note that about 15 percent (113/(113+617)) of the

errors were detected not because of the design nor as a direct consequence of running the test, but almost by

chance (e.g. while setting up the environment to run a test, a fault is uncovered). Additionally, the range in

number of tests run and number of tests failed is large. The smallest team ran only 15 percent (352/2376)

of the number of tests run by the largest team. The minimum number of tests failed was 15 percent

(32/207) of the maximum number of tests failed. To further understand the overall data, the remainder of

this section will discuss some intuitively interesting relationships.

4.2 Test Distribution vs. Next Product Stage Fault Distribution

A first intuitive measure showing the need for effective testing is seen by plotting testing distributions

against faults found in the next stage of the product cycle, after the above testing was completed. Appendix

1 contains six sets (one per team) of three graphs. The first graph shows fault information from the

subsequent stage of the product cycle. (These faults represent all faults found at the next stage, not just the

faults directly related to the testing performed by these six teams.) The second graph shows distribution of

enhancement IMRs. The last graph shows testing dislxibution information. Mean, median, regression, and

o 10-

averagebehaviorlinesaredrawn.Oneexampleisshown below:

mean = 646 var= 60821.6154212 s_ 0ev = 246.620387278

m, , , . °_.

.... ,_-r_.j_••.,, ., •

Date

mean = 532 var = 50380.8936462 sN dev = 224.456886386

Date

mean= 360 var= 13260.7549498 stdOev= 115.155351373

°,

Date

Figure 4. Test, Eahancement, Next Stage Fault Distributions

The distribution of the testing activity tends to be skewed. This is consistent with a quick start up for most

test teams, and a comparatively lengthy "ramp down" and retest period. The interval from the mean test

date to the mean fault date ranged from 108 to 557 days. The number of faults found in the subsequent

stage of the product cycle is signilicaaL Clearly there is room for improvement in the effectiveness of the

testing.

4.3 Testing Data Measures

Simple intuitive relationships within the testing data can be plotted and analyized. One such relationship is

-11-

thenumbertests wriuen plotted against the number of test failures in a FA. For each of the 124 samples, a

data point was plotted showing the number of tests run against the number of failed tests. Regression and

average behavior lines are included.

o

Q

I I I l t I I

0 50 100 150 200 250 300

Tests Written

Figure 5. Test Sampling Effectiveness Measure

This intuitive measure of the overall data seems to indicate that the testing performed is effective in the

sense that when more tests are run, more faults are found. However, Table 1 and Figure 5 both show

significant variations in the amount of testing performed per team. In order to investigate whether the

variation is simply due to the variation across different teams, or because of the distributions of the tests

themselves, the testing performed is mapped to the product internals. Figure 6 shows the disUibution of the

number of test executions by FA. It is clear that the distribution of the tests across FAs is highly uneven

- 12-

(n_an--42,stalldarddeviation=73).

mean = 42.3008130081 var = 5407.98254032
73.5389865331

std dev,

tit

==
)--

E=
Z

8

• °

/

•.:':."_.............

I I I I I I

20 40 60 80 100 120

Functional Area

Figure 6. TestExecutionsPer FunctionalArea

Some FAs are being very heavily tested, while others are being tightly tested. The l_ge variation in testing

by FA raises some new questions. Is the large variation in number of tests run per team and per FA

justified? When more tests are run, are more faults found per test? Can we obtain some insight into the

effectiveness of the testing process? In particular, could all the faults found by this testing have been found

by running fewer tests? Where should future testing be concentrated? To investigate these questions, a

more detailed analysis of the data is required. The next section begins this investigation by categorizing the

data by teams.

-13-

4.4 Data Categorized by Team

As discussed previously, 124 samples of data covering several FAs were colle_ed from the testing results

of eight test teams. In this section the 124 samples were categorized by team and within each team further

categorized by FA. For six of the eight teams, the total number of tests run and number of tests passed on

the first run were summed. These sums are shown in column three of Table 2. Column four shows the pass

rates for the first run testing results. Columns six through nine show the FA average, range, and standard

deviations of testing performed by the team. The ALL row of the table is inclusive of the testing done by

all eight teams.

Temn Aan3mm Total %Pus # FAs Average Min Max Std Dev

Tests Ran 1395.00 I0 139.50 0.00 321.00 119.25
A 85

FR Nmni_ P_ 1187.00 10 118.70 0.00 267.00 102.43

B Tern Run 367.00 84 10 36.70 0.00 163,00 57.27
FR Number Pass 307.00 10 30.70 0.00 123.00 47.28

Testa Rim 352.00 10 35.20 0.00 143.00 42.61
C 89

FR Nulaba Pus 314.00 10 31.40 0.00 124.00 36.97

D Te_ Run 761.00 83 10 76.10 0.00 258.00 103.25
FR Numb_ Pass 632.00 10 63.20 0.00 225.00 85.37

Tests Rim 548.00 10 54.80 0,00 178.00 66.08
E 88

FR Numbeg Pass 480.00 10 48.00 0.00 165.00 59.18

F Tests Rim 2376.00 90 I0 237.60 0.00 1528.00 438.02
FR Number Plug 2147.00 10 214.70 0.00 1489.00 429.81

Tern Rua 6731.00 124 54_,8 0.00 1528.00 151.59
ALL 87

1_ N_tlbeg Pus 5824.00 124 46.97 0.00 1489.00 143.64

Table 2. FA Test Run Statistics Per Team

Table 2 reflects the average behavior of the testing for each team. Using this table, test attributes (rows) can

be compared to one another. A large variance in the number of tests run per team is observed. For

example, the smallest test team ran only 15 percent (352/2376) of the number of tests run by the largest test

team, All teams had a fairly consistent first run pass rate (from 83% to 90%). This seems to indicate

consistency among the teams in selecting tests which are likely to cause product failures. The data

contained in this table seems to indicate that the percentage of tests which fail remains fairly constant

regardless of the total numb_ of tests written. It is possible that running more tests simply finds more

faults (which is somewhat supported by Figure 5).

- 14-

Further information can be obtained from this table by looking at the averages, ranges, and standard

deviations. The standard deviations m'e very large relative to the averages, indicating l_ge variances in the

number of tests run per FA by each team. For every team, there was some FA that was not tested at all

(mm=0).

The individual data points need to be analyized to answer the testing effectiveness questions. A separate

plot of testing pass rate against number of tests run was generated for each of the six teams. Ten data points

were plotted for each team. Each data point represents the testing performed for a FA. A regression line

was drawn for each plot to determine a representative behavior for each team. All data points equal to zero

were excluded from the average behavior, regression, and mean percent pass rate calculations.

mean tests=140 mean pass,=86 mean lasts=35 mean pus=87 mean tern= 55 mean i:_sa=a5

0 100 200 300

Tests

mean lena=37 mean peea=87

$.

5O IO0 150

Tests

0 40 80 140

Teats

mean _1s:=76 meanpess=87

50 1OO1502OO25O
Tests

50 100 150

TelD

mean tssts=238 mean pese=79

0 5_t 1000 1500

Tests

Figure 7. Pass Rate VS Tests Run Per FA For Six Teams

Previously, when looking at the average behavior of testing, it appeared that more testing in an area found

- 15-

morefaults.It is instinctive to compare these plots with Figure 5 which depicts the overall behavior. From

Figure 5, it was observed that the number of tests failing increased with the number of tests run, resulting in

a pass rate which remains approximately constant. In Figure 7, it is seen that while the average pass rate is

constant and close among teams, for some teams, testing a FA more heavily did find more faults per test.

However, for other teams, increased testing resulted in less faults found per test.

To continue this analysis, a mapping of results which is more closely aligned with the product is needed. In

Figure 6, it was observed that a large variation in the number of tests run per FA existed. Now an analysis

of the FAs is pursued in detail.

$. DATA CATEGORIZED BY FUNCTIONAL AREAS

In this section the 124 samples of testing data were categorized by FA, and within each FA the data was

further categorized by team. For each of ten FAs, the total number of tests run and number of tests passed

on the first run were summed. These sums are shown in column three of the table below. Column four

shows the pass rates for the first run testing results. Columns six through nine show team averages, ranges,

and standard deviations for the FA. The ALL row of the table is inclusive of the testing done on all FAs.

- 16-

FA Atm'oate Tetal % Pass # Te_ns Average Mist Max StdDev

Testa Run 2440.00 6 406.67 46.00 1528.00 509.27
FAI 93

FR Number Pass 2280.00 6 380.00 46.00 1489.00 500.79

Tests Rtm 918.00 8 91.80 5.00 238.00 87.34FA2 77
FR Ntm_er Pass 710.00 8 71.00 5.00 187.00 65.39

Tests Run 94.00 8 11.75 0.00 26.00 10.01
FA3 72

PR Number Pus 68.00 8 8.50 0.00 18.00 6.84

Tests Run 223.00 8 22.30 0.00 223.00 66.90
FA4 71

Namber Pass 158.00 8 15.80 0.00 158.00 47.40

FA5 Tests Ran 1008.00 87 6 168.00 62.00 281.00 72.52
FR Nmn[_ Pass 876.00 6 146.00 53.00 267.00 68.60

FA6 Tests Rtm 216.00 87 6 36.00 0.00 216.00 80.50
FR Number Pros 187.00 6 31.17 0.00 187.00 69.69

PA7 Tests Pare 179.00 92 6 29.83 0.00 163.00 59.84
FR Number Pass 165.00 6 27.50 0.00 149.00 54.65

Tests Ran 396.00 8 49.50 0.00 178.00 73.98
FA8 93

FR Numl_ Pma 370.00 8 46.2.5 0.00 165.00 68.47

Tests Ran 86.00 6 1423 0.00 53.00 19.65
FA9 98

FR Number Pass 84.00 6 14.00 0.00 51.00 19.00

Tests Run 459.00 8 5738 0.00 157.00 61.43
FAI0 75

FR Number Pus 343.00 8 42.88 0.00 !23.00 47.59

ALL Tests Run 6731.00 87 124 54.28 0.00 1528.00 151.59
FR Number Pass 5824.00 124 46.97 0.00 1489.00 143.64

Table 3. FA Test Run Statistics Across Teams

Table 3 reflects the average behavior of the testing done for each FA. Using this table, test attributes (rows

in the above table) can be compared to one another. A large variance is seen in the number of tests run per

FA. For example, the average number of tests run for the least covered FA was only 3 percent of the

average number of tests for the most covered FA. In contrast to Table 2, the pass rates were not consistent,

ranging widely from 71 percent to 98 percent. For many of the FAs, a team existed which did not test the

FA at all (as shown by a zero minimum value). Some FAs were tested by only one team. For most FAs,

the team which ran the minimum number of tests ran less than half of the maximum number of tests. For

example, for FA 1 one team ran only 9 percent (46/1528) of the tests run by another team.

When analyizing the average behavior of the testing of a FA, it is difficult to draw any conclusions except

that wide variations exist in the testing performed, and in the faults found per tesL Again, the individual

data points need to be analyized.

Figure 8 contains ten graphs, one for each of ten FAs. Each data point reflects the number of tests run by a

team for the FA plotted against the pass rate of the tests run. A regression line was drawn for each plot to

- 17-

determine a representative behavior for each FA. When only one non-zero data point existed, the

regression line was not calculated. All data points equal to zero were excluded from the average behavior,

regression, and mean percent pass rate calculations. These plots are shown here:

mean tests=407 mean pa.u=91 mean tsSts=12 mean paes=T/

,

o
0 50(3 1000 1500

$ Tests

mean tes#_9"2 mean pass:=83

5O I(X) 150 200

Tests

o
5 10 15 20 25

Tests

mean _ests=22 mean paSS=71

8

$

180 200 220 240 260
Yesl=

mean _ts=168 mean pass=86

_J

100 150 200 250

Testa

mean tesls=36 mean paS_=87

_84

=

3t

180 200 220 240 260

Te_s

- 18-

mean test_=30 mean loess=96

,_.

50 100 150

Tos_

mean tests=50 mean pess=95

rr_en tests=14 mean I_SS:99

10 20 30 40 50

Tes_

mean testl¢=57 mean pass=74

8.

_4

60 100 140 180 20 60 100 140

Tests # Tests

Figure 8. Pass Rate VS Tests Run Per Team For Ten FAs

These plots are consistent with Table 3 in that they show wide variation in the number of tests run. For five

FAs, a decreasing pass rate is observed even though more tests are run, i.e. not only are more faults found

when running more tests, but more faults per test are found. The rate of decrease in pass rate varies widely

among the FAs. For three of the FAs the pass rate shows a slight increase with increased testing. The

remaining two did not have enough data points.

In general, it would be expected that as more tests are run, the quality of the product would improve,

resulting in a higher pass rate. As seen in the above plots, this is not the case for all FAs. It is known that

nmning more tests is reflective of a team's expectation of the FA containing more faults. It is also known

that for each FA, the smaller suites of tests axe generally subsets of the larger suites of tests, and that most

tests contain some degree of redundancy with oth_ tests for the same FA. The above results indicate that

- 19-

for some FAs, a large degree of redundancy exists within the tests scripts. (The size of the set of tests

failing to a single fault increases as the number of tests increases.) Results show that being able to better

predict which tests to run to verify FAs, and reducing the redundancy within the tests are critical.

5.1 Testing Data Amdym Summary

This study began with an overview of the FA and test team data collected. Overall data showed that in

general, as more tests were rtm, more faults were found. However, large variations in the number of tests

run per team and in the number of tests run per FA were observed. Data was then categorized by team. It

was seen that the average behavior of the testing done by the teams appeared to be consistent as seen by the

small range in pass rates. A need to align the analysis more with the product under test was evident. With

the data categorized by FA, a wide variation in the number of tests run and in the pass rate was observed.

The detailed analysis was successful in identifying significant causes for concern in the testing. For the

majority of the FAs, the pass rate decreased with increased testing. Two reasons were suspected for this

decrease in pass rate: the quality of the FA was lower, and large redundancy is created when the number of

tests is increased.

Because the above conventional black box testing results are not based on net product repairs, conclusive

recommendations which result in specific improvements to testing cannot be made. The next section will

provide a white box analysis of the testing results based on product repairs.

6. IMPROVED WHITE BOX ANALYSIS

This section proposes white box analysis methods for black box testing, u_li_ng the integrated database.

The method is used to identify redundancy in testing, and quantify the effectiveness of testing in terms of

the net impact on the product. The error prone SSs and source files found as a result of the testing are also

identified. The cost of repair due to the test effort is also evaluated. This section also provides a correlation

-20-

mappingbetweenblackboxtestFAsandproductSS.

6.1Analysis of Integrated Database Reeords

Team C selected 352 unique tests spanning several FAs to verify the product. Four hundred seventy six test

executions of these 352 tests were completed. Fifty three of the 476 test executions failed. Using the

method discussed in Section 3.1, the fiat, integrated database of test, fault, repair, and source file

information was generated. The following table is an overview of the resulting integrated data.

Unique

Tests

352

Test

Runs

476

Failed

Runs

53

Fault Repairs

Rec_ds

20 7

SSs Source

Ftles

5 11

Table 4. Summary of Testing Impact to Product

Deltas

24

NCSL

115

Twenty defect reports resulted from the 53 failed test executions. Eleven unique source files were repaired

as a result. A very conservative measure of testing efficiency can now be quantified in terms of the ratio of

repairs to tests. Using this measure, the efficiency of this test effort is 2 percent (7/352). A test team goal is

to write only fault reports which result in a repair. Fault reports which do not result in a repair increase the

cost of repair with no value added. A simple measure of fault record effectiveness is the ratio of repairs to

fault records generated. The test team's fault record effectiveness is 35 percent (7/20).

Table 5 shows several relative frequency tables for various categories of test, fault, and _ activity.

-21 o

Distributions

FAs SSs IMR MR

FAs Tests Faults SS IMRs Tests MRs IMRs

2 7 1 4 1 52 0 14

3 10 3 1 2 0 1 5

4 22 3 1 2 1

5 14

Src File Delta Fde NCSL Delta File

Src MRs Delta MRs NCSL Delta Delta Src

0 1 0 1 1 1 1 6

1 3 1 2 11 1 2 3

2 I 2 0 12 1 4 1

3 2 3 0 22 1 8 1

4 2 27 1

5 0 42 1

6 1 ? 1

7 0

8 1

Table 5. Summary Tables of Frequency Distributions

The average test was fairly complex, covering three or four FAs. The number of FAs covered by each test

ranged from two to five. Four SSs contained one fault, one SS contained three faults. All tests except one

found only one fault (IMR). Sevend IMRs written resulted in no _ (0 MRs). To repair the defect

required only one MR in all but one case. Most MRs required a change to more than one source file,

however. This testing found at least one fault prone source file which was touched eight times (eight delta

files).

From the integrated database, three tables were generated to show the relationships between testing, SSs,

FAs, and source files. Each of these three tables below encompasses all eleven of the repairs made as a

result of this team's testing. Recall that a path exists from test information to fault (IMR) to repair (MR) to

source file (see Figure 2). The SS table below was generated first. Starting with the information contained

in the repair record, a column was created for each SS in which a fault was found. Since each repair record

identifies the affected SS, the number of repairs per SS can be counted (row 4). Starting with the repair

record and working forward through the linked path as shown in Figure 2, the source file, deltas, and NCSL

are easily determined (rows 1-3). Then, working backward through the linked path, the faults records

pointing to each of the _ can be counted (row 5). The tests pointing to each fault can be counted (row

- 22 -

6), and the FAs pointed to by the tests can be counted (row 7). The som'ce file and FA tables shown below

were constructed in a similar fashion.

Subsystem Number

SSI SS2 SS3 SS4 SS5

NCSL 27 1 12 75 ?

Deltas 1 1 4 18 ?

Sre 1 1 3 6 ?

MRs 1 1 1 3 1

IMRs 1 1 1 3 1

Tests 1 4 1 4 1

FAs 4 6 3 8 4

Source F'de Number

St-el Sre2 Src3 Sre4 Sre5 Sre6 Sre7 Src8 Sre9 Srcl0 Srel 1

NCSL 27 1 9 I 22 10 I 26 6 6 6

Deltas 1 1 2 I 8 2 1 4 1 1 2

SSs 1 1 1 1 1 1 1 1 1 I 1

MRs 1 1 1 1 1 1 1 1 1 1 1

IMRs 1 1 1 1 1 1 1 1 1 1 1

Tests I 4 I I 2 I I I I I I

FAs 4 6 4 4 5 2 4 2 3 3 3

Functional/Uea Numb_

3 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

NCSL 0 50 47 12 12 35 0 22 0 0 0 0 0 1 22 0 ! 1 0 50 38 1 50

Deltas

Sm 0 5 6 3 3 3 0 1 0 0 0 0 0 1 1 0 I 1 0 5 4 1 5

MRs 0 4 3 1 1 2 0 1 0 0 0 0 1 1 1 0 1 1 0 4 2 1 4

SSs 0 3 3 1 1 2 0 1 0 0 0 0 1 1 1 0 I 1 0 3 2 1 3
IMRs 2 10 11 I 4 6 1 1 1 1 2 1 3 4 4 2 2 4 1 9 1 4 8

Tests I 23 22 1 4 16 2 2 4 4 1 1 1 9 16 1 2 13 2 19 1 11 18

Table 6. Test, Fault, and Repair Relationships Quantified

The first table provides the data relative to a given SS. The effort or chum on SSs 3 and 4 was large

(several deltas and sotu'ce file modifications were needed to implement the repair). By snmmlng across the

"tests" row, it can be seen that from a SS perspective only 11 tests were needed to find the faults. By

summing the across "FAs" row, it can be seen that these same 11 tests were designed to provide coverage

of a FA 25 times.

The second table provides the data relative to a given product source file. The effort or churn on source

files 5 and 8 was large (several deltas were needed to provide the repair). The n_ of NCSLs needed to

- 23 -

providetherepairon source file 1 was also large. Again, by summing the "tests" row, it can be seen that

from a source file perspective, the number of tests needed to find the faults was only 15. By summing the

"FAs" row, it can be seen that these same 15 tests were designed to provide coverage of a FA 40 times.

The final table provides the data relative to a given FA. For this team, the tests which failed covered 23

FAs. From the black box perspective provided in the final table, the testing for each FA can be justified

since an IMR can be found which relates to each FA. Furthermore, it appears that there are several FAs

which needed extensive testing due to high NCSL, number of sotur.e files affected, number of SSs and

number of MRs. These include FAs 5 - 13, 27, 28, and 30. The first three FAs (FA 3, 5, and 10) are

"standard" FAs commonly used for reporting results. The remaining FAs are often used within the test

team to provide additional granularity. Since conventional analysis is often done at both levels, both are

included here. By summing the "tests" row for the "standard" FAs (3,5, and 10), it seems that the number

of tests needed is 46. By summing the "tests" row for all FAs covered by these failed tests, it seems that the

number of tests needed is 174.

The redundancy problem of black box, FA oriented testing now becomes clear. Due to the overlapping

information at the FA level, the effort needed to find faults is exaggerated. This redundancy is carried into

the test scripts themselves. A simple measure of this redundancy is the ratio of number of failed tests to

minimum number of tests needed to find the faults. For this testing, the redundancy meuic ranges from 4.2

(46/11) to 15.8 (174/11). When a white box testing data analysis is used, the effort needed to find the faults

is kept in proper perspective, and redundancy of tests will be reduced.

Based on the integrated database, very specific actions can be taken by the test team:

1. The black box test team can request that additional unit level testing be done on fault prone source

files (1, 5, and 8).

2. The team can request additional feature level testing be done in SSs 3 and 4.

3. The future cost of test can be op "tnnized. Clearly there was unproductive effort spent in system test as

476 test runs (at high expense) covering 30 FAs, and many SSs and source files resulted in only 11

-24-

.

source file modifications. Many FAs and SSs were tested with no faults found. Prediction methods

need to be developed to reduce unproductive, costly test effort.

The costof repaircan be optimized.Many faultrecordswe_ opened withoutresultinginfaults

repaired in the product.

Typical relationships between FA, test, fault, repair and source file provide the basis for a testing

effectiveness measurement. This will be discussed next.

6.1.1 Test Effectiveness Measurement Typically, a test is related to several FAs. For a failed test, one to

several faults may be found. For each fault, usually only one repair results. The repair typically affects one

to several source files. From these relationships, many composite diagrams can be drawn. The most

common composites for failed tests are shown below. The diagram on the left shows a test which failed

and resulted in a repair. The right diagram shows a test which failed, but no repair resulted (e.g. pilot

error):

Test

Fault Record

Repair _..._
Som'ce

Figure 9. Typical Failed Test Relationships

In order to reduce redundancy and obtain the most orthogonal mapping, the effectiveness measures should

be obtained by starting with the repair record, and following the database links upward to FA, and

downward to source file. This explains why the minimum number of tests was found in the SS table above

and not the source file table.

This section discussed the data contained in the integrated database. Using the integrated database, testing

-25-

efficiencywasmeasuredat2percent,faultrecordeffectivenesswasmeasuredat35 percent, and test script

redundancy was measured at 4.2 to 15.8. Error prone source files and SSs were identified. To aid in

prediction of which tests to run and how many, a mapping from test FA to product SS is needed. The next

section will discuss a correlational mapping.

6.2 Correlation Mapping of Test Script Functional Area to Product Subsystem

Because of the lack of mapping from FAs to SSs, it is difficult to predict with confidence which tests should

be selected, or how many tests are needed. The ability to make such predictions is a critical part of making

testing more effective, and reducing the cost of testing. This section documents a procedure which can be

used to determine the relationship of running black box tests for a given FA and finding faults in some

given product SS. The FAs and SSs were exUacted from the integrated database. A sparsely populated

existence malrix was built where a column represented a SS or FA, and a row represented a test execution.

The maWix contained 51 SSs and 23 FAs (74 columns) for 53 unique test executions (53 rows). A "1" in

the maUix indicated that a SS or FA occurred as a result of running a test script. An example mple of the

matrix can be found in Appendix 3.

Correlation coefficients were then determined from the malrix. This resulted in a 74 by 74 matrix of

coefficients, where [i,j] °' element corresponds to the i _ column and the jo, column of the existence malrix.

An example row of the FA/SS correlation coefficient mauix can be found in Appendix 4.

-26-

Thefollowingis a scatter plot of the correlation coefficients for one example SS only:

Q)

o
C3

o

,SS2

6S1 6$3

4=A2.1,F.A24

,FA33

_A10

FA_
.FA25

6ss4=A__
6S4 ,FA36_6Z

_A22 .FA__
_A5

i I I

2O 4O 6O

Areas and Subsystems

3O

Figure 10. Correlation Coefficients for One Subsystem

Since the plot was produced for SS 2, the correlation coefficient for SS 2 is obviously 1.0. From the limited

data used, the data shows the FAs which m'e more likely to find faults in SS 2 (high correlation), as well as

the FAs which are less likely to find faults in SS 2 (low correlation). This method provides the mapping

needed between product SS and test FA. Using this method, better prediction of tests which find faults can

be made by selecting tests from a FA which is highly correlated to a SS undergoing major modifications.

In addition to FA and SS, the integrated database opens many opportunities to explore various

relationships. A few examples include:

- 27 -

• FaultrelationshipofSStoSS.

• RelationshipofFAtoSourceFries.

• RelationshipofFAtoNCSL.

Inthismanner,whiteboxmethodscanbeusedtostudythe effects of black box customer-oriented system

testing.

7. ADAPTIVE TF_TING PROCESS PROPOSED

The methods and res,,lts obtained in this paper provide a foundation for more effective, adaptive testing

processes. The _r_:ve results lead to the following proposed process for adaptive black box large systems

regression testing:.

Using information of modified source files as key to a testing knowledge database, initial test selection is

performed. The following steps are then followed:

1. Execute tests.

2. Eater results into the test database.

3. Ente_ fault information into the fault DB.

4. Enter repair information into the repair DB.

5. Generate the integrated database.

6. Perform analysis of integrated database:

Product/Test/Fault/Fix Relationships

Correlation

Regression

Statistical Process Control

- 28 -

7. Directattentiontofaultpronesourcefiles.

8. Direct attention to fault prone SSs.

9. Add Test-FA-SS-Source knowledge to knowledge base.

10. Add/modify/delete regression tests.

11. Perform revised test selection using new information.

12. Repeat until testing is complete.

This process can be used to reduce both the cost of test and the cost of repair. Perhaps most importantly,

the revised process has no impact on testers in the way tests are run and results reported. No changes to

existing databases are needed. The integrated database and subsequent analysis can be implemented with

tools which "run on top of' the existing test, fault, and repair databases.

8. CONCLUSIONS AND RECOMMENDATIONS

This paper studied black box testing and verification of large systems. The paper began by collecting data

from several testing teams. An integrated database was generated containing test, fault, repair, and source

file information. The paper provided evidence to suggest that conventional black box testing analysis needs

to be augmented by additional analysis to be effective.

The white box analysis methods proposed use current available data and can aid in cost reduction and

quality improvement. The methods proposed will result in significant cost and quality improvements. The

white box data contained in the integrated database was studied in detail. Conservative measmes of

effectiveness were discussed. Testing efficiency was measured at 2 percent, fault record effectiveness was

measured at 35 percent, and test script redundancy ranged from 4.2 to 15.8. Additional benefits from the

methods proposed include the following: 1) Error prone source files and SSs are identified. 2) The

integrated database provides a platform for development of additional robust analysis techniques. 3) The

proposed methods are independent of the product under test. 4) The methods allow critical evaluation of

-29-

variousblackboxtesting techniques. A correlational mapping of test FA to product SS was completed. A

new adaptive testing process based on real-time generation of the integrated database was proposed.

Black box tests are a very important part of product verification. It is important that suites of tests are

designed purely from the customer/feature perspective in order to ensure that the customers expectations of

the product are met. The black box testing perfornmd by the teams studied in this paper was successful in

that "customer oriented faults" were found which otherwise might have affected the customer. However,

the results of this study show that once the black box test has been designed and developed, white box

methods then need to be used to map the test to product internals in order to analyze results and provide a

basis for future prediction. Testing is very expensive, and this mapping is critical in predicting which tests

are most likely to find faults, and eliminating the execution of unnecessary or redundant tests, thereby

significantly reducing the cost of test. The integrated database linking test, fault, and repair information

greatly facilitates the effort of improving testing and redirecting future black box testing.

ACKNOWLF_DGEMENTS

The authors would like to thank lames Yu for his help in MR data collection, Steve Ohnsmau for providing

the description of the structure of the test data, and Bill lones and lnhwan Lee for their thoughtful

conlments.

This work was supported in part by the Office of Naval Research under Grant N00014-91-I-1116. The

content of this paper does not necessarily reflect the position or policy of the Office of Naval Research.

- 30 -

Append_ I - Distribution Comparison of Tests and IMRs

mean = 722 var = 63903.2291741 std dev = 252.790880322

(D- ° .

. •

. .. _ * . _ • ..

o

t_

o

o"

o 12oo

Date

mean = 728 var = 27168.9142858 std dev = 164.829955669

....................... . :---:--,--__.-
, , , , , ,

0 1200

Date

mean = 165 var = 11732.8904701 std dev = 108.318467816

iI:

Q-

Dale

1200

-31 -

mean = 630 var = 119420.301491 std dev = 345.572425826

00

rr ©

O4

nr

Z
O)

<5

_D

(5

........... _........ .*_ *
....................... __

r "1-

0
Date

mean = 742 var = 221552.333334

T T I

Date

mean = 188 var = 7569.12100299

1000

std dev = 470.69346005

1000

std dev = 87.0006954167

-!

nr

Q
I--

0
OJ

0

Q

. "...j.';
.... "';-c - -5'.

J

t *

Date

tooo

-32 -

mean = 446 var = 60821.6154212 std dev = 246.620387278

(n
n-

U. :" : * ,. ,v, _, ,b o

6

mean = 332

J

-_._as_-*_.~ r -e- - .b_* * _* ** ** *

1000

Date

var = 50380.8938462 std dev = 224.456886386

z

o* *

......................._t" b,la..,r,m_-•:...• L _ I

0 1000

Date

mean = 160 var = 13260.7549498 std dev = 115.155351373

0
QO

c

rr

q)
I-.

Q ".. "-,_'d_'** __._"

Dalo

r

10(O)

-33-

mean = 444 var = 75590.1982767 std dev = 274.936716858

n-

U.. 0

_')

0

mean = 248

Date

var -- 62222.6666667 std dev = 249.444716654

0 looo
Date

mean = 162 var = 3839.59774.44 std dev = 61.9644877684

.

=_.
n,-

I,--

0 t

Date

- 34-

mean = 515 var = 43029.9550547 std dev = 207.436629009

t.D

It)

(A

rr _.

U.

e,J

_, io • ,

_E_C
• a, eo._*_ ,*,_,._, _ wo _,_ $'-ai-* *muv.;_ • * - --_

1000

Date

mean = 564 var = 45713.4904763 std dev = 213.807133829

__o.

@
z

• °

mean =

Date

138 var= 13196.1948718 std dev = 114.874692042

O
t.D

r-

(U
I--

C_
CM

O

•o
I

[?ate

- 35 -

mean = 258 var = 62846.5549451 std dev = 250.692151742

¢r

.,..,
:3

LI.

Q.
03

¢q

q
04

q _ i-"

0

mean = 10

.._ _. .I-

8OO

Date

var= NA stddev= NA

er

Z

°_

Q._

o-

O

0

mean = 150 var =

800
Date

10426.8357143 std dev = 102.111878419

n"

¢o 0

I--

o
_r,,. t - _*•

Date

- 36 -

Appcmlix 2 - Example Tuple: Integrated Testing/Product Database

I ...

IP_ t"_STID IRDA"_ IRI.,O_ I_PPL IWHO I_1
I I I I I I IA_I
I I I I 1 I Iusl
I ...

I ...

I ..

I ..

I ..

t .. I

I TARGET I FEATID I FEATID2 I

I .. I

- 37 -

I ...

I asday asdept osrc arts capdu spare1

i ... !

I ...

... i

tested feataft include otrno issaff imrneed I

... i

... i

... i

phone loc dept lastcmd lastuser sugsup I

... i

... i

-38 -

I ... I

I revreas steam I steng I engstat I su_aarkl I suplnakr2 1

I ... I

I ... I

I odd docneed I docmark I recur I verify I clday I

I ... I

I ... I

- 39 -

Appendix 3 - Example Tuple : FASS Existence Matrix

I ... J

I ss61 ss71 ss81 ss91 sszl sszo Isszz I ssz21ss131ssz41ssz51ssz61ssz71ssz8 I
I ... I

z I ol ol ol ol ol ol ol ol ol ol ol ol ol ol
I ... I

J ... I

Issz91ss201ss2z I ss22I ss231ss241ss2s I ss261ss271ss281ss291ss301ss3z I ss32I
I ... I

I ol ol ol ol ol ol ol ol ol ol ol ol ol ol
I ... I

I ... I

I ss2 I ssaaI ss341ssaslss361ssav Issasl ss3 I ssaslss401ss4zlss42 I ss431ss441

z I ol ol ol ol ol ol ol zl ol ol ol ol ol ol
I ... I

I ... l

Iss4slss461ss471 ss41 SSSISS4SlSS4£1SSSOISSSZlZ_tZIF_t21F_alFm41F_ZSl
I ... I

z I Ol ol ol ol ol ol ol ol ol zl zl ol ol ol
I ... I

I I

I_'_7 Ir_81_'_911'_o I
I I

z I ol ol ol o l
I I

-40-

Appendix 4 - Example Tupie : FA SS Correlation Matrix

-41 -

I ... I

I s8441 ss4sI s8461 ss471 ss41 sssl
I ... [

11 _I _I _I _I-0.187885 I-0.09119211
... I

I ... I

I s8481 s8491 sssol ssszl Fmzl _,_2 I
... I

11 z_l _1 _1 _1-0.09119211-0.1878851
I ... [

I ... I

I _'_31 Fro41 _'_s I n,,,.z61 F_'71 Fro8 I
I ... I

1 I 0.6137791 0.301142 I -0.130223 I -0.1878851 -0.1878851 -0.130223 I
I ... I

I ...

I _,_ 91 F_ oI _,_ 11 F_ 21 F_31 _,_ 3
...

1 I-0.09119211-0.09n9211 0.445003t-0.4324331-o 1302231 -0.130223
I ...

I ...

I _'_ I _'_ 41 _,_ s I F_ 01 F,_ 61 _'_ 7
I ...

1 I-O.STS7881-0.18788sl 11 0.621371 -0.1302231 -0.491583
I ...

I I

I _'_81 F_9t l,_ot
I................................ I

1 I-0.09119211 0.9111141-0-471587 I
I................................ I

-42-

REFERENCES

1. Kaner, C., 'Testing Computer Software," TAB Books, Inc., ISBN 0-8306-9563-X, 1988.

2. Gallagher, If. B., Lyle, J. R., "Using Program Slicing in Software Maintenance," IEEE Transactions on Software

Engineering, August, 1991.

3. Howden, W. E., "Error-Based Validation Completeness," Proceedings: llth Annual Conference on Software

Engineering," May, 1989.

4. Duaham, J. R., et.al., "Design for Validation: An Approach to Systems Valktation," Dialog, NTIS, May, 1989.

5. Chow, T. S., "tutorial Software Quality Assurance A Practical Approach+" IEEE Comput_ Society Press, ISBN

0-8186-0569-3 1985.

6. Mnsa, J. D., lannino, A. and Okumoto, IC, "Software Reliability: Measurement, Prediction, Application,"

McGraw-lTtU Co., 1987.

7. Shemr, S. A., "A Cost-Effective Approach to Testing," IEEE Software, Ma_h, 1991.

8. Weyuker, E. J., Jeng, B., "Analyzing Partition Testing Strategies," IEEE Transactions On Software Engineering,

July, 1991.

9. Iyer, 11. IC and Rossetti, D. J., "Effect of System Workload on Operating System Reliability: A Study on IBM

3081," IEEE Transactions On Software Engineering, V ol. SE-11, No. 12, December, 1985, pp. 1438-1148.

10. Tang, D., Iyer, R. IL, "Impact of Correlated Failures on Dependability in a VAXclnst_ System," Proceedings of

the 2rid IFIP Working Conference on Dependable Computing for Critical Applications, February, 1991.

11. Chillarege, 11., Sullivan, M., "A Comparison of Software Defects in Database Management Systems (DB2,IMS)

and Operating Systems (MVS)," Sympositan in Fault-Tole_mt Computing, FTCS-22, July, 1992.

12. Munson, J. C., Khoshgoftaar, T. M., "I'ne Detection of Fault-Prone Programs," IEEE Transactions on Software

Engineering, May, 1992.

13. LevendeL Y., "Reliability Analysis of Large Software Systems: Defect Data Modeling," IEEE Transactions on

Softwaxe Engineering, February, 1990.

- 43 -

14.Joglekar,M.andParuzynskiD.,"End to End Testing Database Experience," Prcr.eedings of 5th Annual AT]" Test

and Verification Symposium, 1991.

15. LevendeL Y., "Improving Quality with a Manufacturing Process," IEEE Software, March, 1991, pp. 13-25.

-44-

